

Reg. No.:....

Name :

Fourth Semester B.Tech. Degree Examination, May 2013 (2008 Scheme)

Branch: Computer Science

08.403 : COMPUTER HARDWARE DESIGN (R)

Time: 3 Hours

Design an ammaelic operations. Draw the look diagram of one typical stage.

Answer all questions.

- 1. Explain how floating point representations are done in computer memory.
- 2. What is an array multiplier?
- 3. If the remainder off a non-restoring division is a negative number, what should be done to correct the result? Why?
- 4. Design a circuit that detects overflow in signed 2's complement representation.
- 5. Design a circuit to implement the micro-operations:

$$\overline{X}T_7: A \leftarrow A + \overline{B} + 1$$

- 6. What are different arithmetic micro-operations?
- 7. Differentiate between micro-operation and macro-operation with an example,
- 8. What is the difference between PLA control and ROM control?
- 9. Explain the working of Control Address Register (CAR) in microprogram control.
- 10. Explain about nanoinstructions.

(10×4=40 Marks)

PART-B

MODULE-I

- 11. a) With a block diagram explain 4×3 array multiplier using parallel adders. 8
 - b) Explain the hardware for Booth's multiplication. Using Booth's multiplication algorithm, multiply +21 × -9.

12. a) Draw the register configuration for floating point arithmetic operations. 6

b) With example explain restoring method of division. Draw the flow chart.

MODULE - II

13. Design an arithmetic circuit with two selection variables S₀ and S₁, that generates the following arithmetic operations. Draw the logic diagram of one typical stage.

S	S	C _{in} =0	C _{in} =1
0	0	F = A+B	F = A+B+1
0	013	F = A	F = A+1
1	0	$F = \overline{B}$	$F = \overline{B} + 1$
1	1	$F = A + \overline{B}$	$F = A + \overline{B} + 1$

20

12

14

OR

 Design a simple computer which can perform following three categories of operations MOV R

LDI OPRD

LDA ADRS

20

15

5

MODULE - III

- 15. a) With a neat diagram explain micro-program sequencer and its importance in design of control memory.
 - b) What is a control state diagram? Explain its use in designing a control unit.

OR

16. What is a microprogram? Explain the working of microprogram control unit with a neat diagram.

20